Hydrogel-actuated integrated responsive systems (HAIRS): Moving towards adaptive materials

نویسندگان

  • Philseok Kim
  • Lauren D. Zarzar
  • Ximin He
  • Alison Grinthal
  • Joanna Aizenberg
چکیده

The move toward sustainability and efficiency in nearly every field calls for dynamic materials that can harvest energy from and adapt to a changing environment. Here we review our recently developed, widely applicable strategy for adaptive surface design that integrates two rarely associated categories of materials – nanostructured surfaces and hydrogels – into a hybrid architecture. The nanostructure arrays provide unique topographic patterns that confer wetting, optical, and many other functions but on their own are generally static; by embedding them in a layer of responsive hydrogel, we channel the mechanical forces generated within the swelling/contracting gel to reversibly reconfigure the nanostructures in response to stimuli. Since the sensing and responding components are structurally distinct, they can each be programmed independently to match potentially almost any type of environmental change with almost any type of output. Several of our recent advances in nanofabrication make it possible to choose from an entire spectrum of nanostructured materials, stiffnesses, shapes, symmetries, orientations, and large-scale surface gradients, enabling a given stimulus to be translated into a vast assortment of complex multiscale patterns and adaptive responses. The gel chemistry and nanostructure flexibility can be further optimized for incorporating the surfaces into a variety of structures and environments. We envision using this platform to create a generation of sustainable, self-adapting, and self-reporting

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harnessing structural instability and material instability in the hydrogel-actuated integrated responsive structures (HAIRS)

We describe the behavior of a temperature-responsive hydrogel actuated integrated responsive structure (HAIRS). The structure is constructed by embedding a rigid high-aspect-ratio post in a layer of poly(Nisopropylacrylamide) (PNIPAM) hydrogel which is bonded to a rigid substrate. As the hydrogel contracts, the post abruptly tilts. The HAIRS has demonstrated its broad applications in generating...

متن کامل

Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH.

IO N Responsive and reversibly actuating surfaces have attracted signifi cant attention recently due to their promising applications as dynamic materials [ 1 ] that may enable microfl uidic mixing, [ 2 ] particle propulsion and fl uid transport, [ 3 ] capture and release systems, [ 4 ] and antifouling. [ 5 ] Analogs in nature serve as inspiration for the design of such advanced adaptive materia...

متن کامل

Environmentally responsive active optics based on hydrogel-actuated deformable mirror arrays

We report hybrid polymer actuator arrays based on environmentally responsive hydrogel and actuatable optical microstructures that are designed to reversibly switch optical properties in response to the environment. Arrays of micrometer scale plates were patterned by deep reactive ion etching of silicon which served as master structures for replica molding in polydimethylsiloxane (PDMS). UV-cura...

متن کامل

Reversible switching of hydrogel-actuated nanostructures into complex micropatterns.

Responsive behavior, which is intrinsic to natural systems, is becoming a key requirement for advanced artificial materials and devices, presenting a substantial scientific and engineering challenge. We designed dynamic actuation systems by integrating high-aspect-ratio silicon nanocolumns, either free-standing or substrate-attached, with a hydrogel layer. The nanocolumns were put in motion by ...

متن کامل

Tunable microlens arrays actuated by various thermo-responsive hydrogel structures

We report on liquid-based tunable-focus microlens arrays made of a flexible polydimethylsiloxane (PDMS) polymer. Each microlens in the array is formed through an immiscible liquid–liquid interfacial meniscus. Here deionized water and silicone oil were used. The liquids were constrained in the PDMS structures fabricated through liquid-phase photopolymerization for molding and soft lithography. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011